Denison Creek

Copper Molybdenum Gold
Porphyry Project, BC Canada

‘On the Cusp of Discovery’
Disclaimer:
The information contained herein, while obtained from sources which we believe are reliable, is not guaranteed as to its accuracy or completeness. The contents of this presentation is for information purposes only and does not constitute an offer to sell or solicitation to purchase any securities referred to herein.

Forward-looking Statements:
This presentation contains certain forward-looking information and forward-looking statements as defined in applicable securities laws. These statements relate to future events or future performance. All statements other than statements of historical fact are forward-looking statements. The use of any of the words "anticipate", "plan", "continue", "estimate", "expect", "may", "will", "project", "predict", "potential", "should", "believe" and similar expressions are intended to identify forward-looking statements. These statements involve known and unknown risks, uncertainties and other factors that may cause actual results or events to differ materially from those anticipated in such forward-looking statements. These statements speak only as of the date of this presentation. Actual results and developments are likely to differ, and may differ materially, from those expressed or implied by the forward-looking statements contained in this presentation. Such statements are based on a number of assumptions which may prove to be incorrect, including, but not limited to, assumptions about general business and geological assumptions, economic conditions, financing availability, the timing of the receipt of regulatory and governmental approvals for projects, the ability to attract and retain skilled staff, market competition and ongoing relations with employees and with business partners. The reader is cautioned that the foregoing list of important factors and assumptions is not exhaustive. Events or circumstances could cause actual results to differ materially from those estimated or projected and expressed in, or implied by, these forward-looking statements. The Company undertakes no obligation to update publicly or otherwise revise any forward-looking statements or the foregoing list of factors, whether as a result of new information or future events or otherwise.
A track record of exploration success:

- Discovered over 10 million ounces gold in multiple jurisdictions and geological environments
- Have advanced projects from discovery to pre-feasibility
- Have generated and optioned projects to international mining companies
- Multi-disciplinary expertise
- Minimum 20 years experience each

Colin McAleenan B.A. (Mod.), P.Geo.: President & Director

Cyrus Ameli B.Comm.: Vice President & Director

Robin Day B.Sc.: Director

David Kong CA: Director
100% owned by Fractal

32 km² property

Porphyry system with indicative scale of ~3km x 3km

Drill ready

Close to infrastructure

NI 43-101 Technical Report

Note the setting of the property on the edge of the Bowser Lake basin / Skeena Arch, and proximity to known porphyry deposits. Note also the location of the port of Prince Rupert.
- 32 km² property
- Road access within 2 km
- 20 minute heli ride from Smithers, 10 minutes from New Hazelton
- CN rail-line within 20 km of project connected via Suskwa forest service road
- Prince Rupert port link by road and rail
- 138 kV Power lines within 20km and 500kV lines within 75km

Note the proximity of the project to road, rail, power and water - Hazelton to Prince Rupert is approximately 290km by paved highway and rail.

The elevation of the north E-W ridge is approximately 1,800 metres and the valley floor (Denison Creek Valley) is at approximately 1,100 metres.
Regional scale batholith - believed to belong to the Upper Cretaceous Bulkley Intrusive Suite but no geochronology available. (Poplar & Huckleberry deposits associated with Bulkley age intrusives).

As we advance through the slides, the exploration grid pattern serves as a general location reference with N-S lines 200 metres apart for scale.

The east-west and north-south lines have undergone soil sampling and IP/ Resistivity surveys.

The three northwest lines have undergone soil sampling. The NNW line marks the 'deep' IP survey line. Note the extent of the heli-borne Mag/Gamma Ray Spec surveys as well as the heli-borne ZTEM survey (10 km x 3 km).
PRINCIPAL EXPLORATION PROGRAMS’ RESULTS
Geology: Concentric intrusive arrangement around the mapped monzonite stock.

Drill Core: no assays are available, but logs from 1975 were preserved for a few holes to the south of the northern grid. These referred to cpy + moly in veins and disseminations with K increasing downhole. Chlorite-Sericite overprinting of K alteration.

The oxidized copper sample was found on the ridge top in an area of strong soil anomalies. The biotite granodiorite intrusive appears to be magnetic while the biotite granite and monzonite are not.
Note the circular area of the higher relative K values and its approximate correlation with the mapped monzonite unit.

N-S grid lines are 200 metres apart.
Circular zone rimmed by precursor magnetic intrusive (biotite granodiorite)

Non-magnetic zones due to quartz monzonite porphyry associated with Cu/Mo mineralization

Non-magnetic zone also coincides with circular potassium anomaly center

The magnetic "hole" corresponds with the monzonite and adjacent areas and also with the K anomaly. The circular magnetic rim correlates quite well with the biotite granodiorite distribution.
Cu in soils: 2 main areas including the north ridge and west grid areas, ie mostly within and to the north of the monzonite stock with ENE trending zones in the east.

Mo in soils: Similar to Cu but with higher values in the ENE trending zones in the central and eastern parts of the main grid in the Valley.

Au in soils: Highest values are found in the north grid and NW with scattered zones in the eastern part of grid. Au anomalies roughly coincide with the distal parts of the system if centered on the monzonite. Zn + Pb are similar to Au distribution but not present in the north.

Note the large areas requiring further sampling to complete the coverage.
GEOPHYSICS DATA
INVERSIONS
(MODELLING)

2D IP/Resistivity Inversions by Peter E. Walcott & Associates Ltd.

3D IP/Resistivity, Magnetic and ZTEM Inversions by Computational GeoSciences Ltd.
Six frequencies recorded: 30, 45, 90, 180, 360 and 720 Hz, showing results from depth (a few kilometres) to shallow levels respectively.

This slide shows the 90 Hz (DT) for intermediate depth. Flight lines are 200 metres apart and the strip is 10 km by 3 km.

The red areas (conductive zones) in the west and east appear to be related to the host volcanics and sediments to the batholith. The red (conductive zones) and blue areas (resistive zones) in the central part of the grid are responses from within the intrusive itself.
Top Left: Plan view at approximately 1,100m, with scale in ms. Note that the grid position of the anomaly in the west places it within the monzonite intrusive. The large anomaly in the east may be related to the batholith contacts with the host volcanics and sediments and may be hornfelsed.

Bottom Left: The block section A-B shows a blind IP anomaly below the valley and has a vertical extent of about 400m and a length of >2,750m. This anomaly comes to surface on the north ridge. Note that these modelled anomalies are constrained by the truncated IP grid.

Top Right: The 2D modelled IP responses along line A-B. The chargeability anomaly shows up at a depth of about 300m but with a chimney to surface just to the north of Denison Creek valley. This chargeability anomaly may connect with the very strong feature outcropping on the northern ridge. Note the position and lack of depth of the historical drill hole.

Bottom Right: The 2D modeled Resistivity response suggests that the deeper parts of the IP chargeability anomaly may be resistive while the surface parts are conductive.
The block diagram of the 400 and 4,000 ohm.m isosurfaces is by Geotech Ltd., the firm that flew the survey. Note the circular resistor with annular conductive zones coinciding with the K anomaly / monzonite stock.
The upper diagram is a horizontal slice of the 3D ZTEM model by Computational Geosciences Inc. at an elevation of approximately 800m i.e. about 300m below valley floor.

The East-West section C-D shows the sediments contact in the west and east (hornfelsed?) and a buried conductive zone that has a vertical thickness of about 600m and a NS length of >2,500 (open to N). The west side of the monzonite resistor is also a conductor and has a N-S length of >3 km (open to N & S). The N-S section shows the conductive zone to be flat-lying - agreeing with Geotech’s image of the 400ohm isosurface in the previous slide.
The 3D magnetic modelling by Computational Geosciences Inc. shows that the magnetic 'hole' which coincides with the monzonite stock only extends down to approximately 1,000m below surface and is underlain by rock with a higher magnetic response (note the vertical scale of the magnetic model).
The following comparisons are drawn from third party published sources and are intended to illustrate similarities between known deposits and potential Denison Creek deposits. Please refer to Company’s disclaimer in the Forward Looking Statements on slide 2.
Denison Creek magnetics (top image) characterized by a -3 km magnetic oval shaped response with much of the center being non-magnetic.

Initial porphyry discoveries in the Cobre Panama (bottom left) porphyry cluster (Valle Grande, Colina, Botija) were all made in non-magnetic 'holes' following up on stream sediment anomalies.

The Ike porphyry (bottom right) discoveries were also initially all centered in the project's non-magnetic 'holes' surrounded by magnetic highs.

“Magnetic Holes” successfully targeted by exploration drilling programs at both Cobre Panama and Ike projects.
An early success for the ZTEM system was at Cobre Panama. Unlike the other deposits at Cobre Panama the Balboa deposit had no geochemical anomaly associated and was a magnetic high. It was only drilled after a ZTEM survey was completed on the property in 2010 and Balboa presented as a strong conductor like all of the known deposits. Based on the ZTEM response, it was finally drilled and a buried porphyry was discovered.

Note the conductive haloes around resistive cores at Cobre Panama, a similar pattern to that found at Denison Creek.
ZTEM surveys at the Pebble deposit in Alaska and the Morrison deposit in BC repeat the pattern of resistive cores with conductive haloes.
Section through the classic porphyry model developed by Lowell and Guilbert in 1970.

Faulting, tilting and specific deposit settings can distort this picture but it is still largely intact as a good working model. Note that ZTEM would show the Potassic Core as a relative resistor compared with the more altered and conductive outer zones. Parts of the Potassic Core and the "Ore" zones would also have a chargeability response.

Also, note that, at depth below the Potassic Core, the mineral assemblage can include magnetite as in the magnetics inversion model at Denison Creek (slide 17.)
Porphyry mineralization is targeted at drill sites A through E based on the geophysics models and the geochemistry results as well as geological mapping results seen to date at Denison Creek.

Approximately 3,000m of drilling in 4 to 6 holes is envisaged for a Phase I discovery program.
• 3D Inversions of Mag and ZTEM conform with those of known large-scale porphyry deposits

• Large scale also indicated by ~3 km axis of ellipsoidal Potassium anomaly from high res. Gamma Ray Spectrometer Survey

• One of multiple targets is a buried IP Chargeability anomaly at west end of grid that remains open in 3 directions with modeled dimensions of ~500 m vertical thickness by ~1,000+ m by ~600+ m

• In situ Cu and Mo mineralization and metal dispersion patterns in soils suggest presence of Cu-Mo porphyry deposit associated with the QMP

• Property is within easy reach of existing road, power, water, rail and port infrastructure

• Multiple drill targets awaiting discovery drilling program
Privately Held Company

Shares Outstanding: 10,418,569
Warrants Outstanding: 0
Options Outstanding: 700,000
Insider Ownership: 51%
Fractal Mining Corporation

Colin H. McAleenan t. (604) 374-6774
cmcaleenan@fractalmining.com

Cyrus Ameli t. (604) 488-9027
cameli@fractalmining.com